求1/(19*21)+1/(21*23)+1/(23*25)+1/(25*27)+.+1/(97*99)的值1/(3*5)=(1/2)*(1/3-1/5) 1/(5*7)=(1/2)*(1/5-1/7).
问题描述:
求1/(19*21)+1/(21*23)+1/(23*25)+1/(25*27)+.+1/(97*99)的值
1/(3*5)=(1/2)*(1/3-1/5) 1/(5*7)=(1/2)*(1/5-1/7).
答
原式=1/2[(1/19-1/21)+(1/21-1/23)+...+(1/97-1/99)]
=1/2(1/19-1/99)
=40/1881
答
第一个式子化为:
1/2*(1/19-1/21)+1/2*(1/21-1/23)+.....+1/2*(1/97-1/99)=1/2*(1/19-1/99)
=40/1881
第二个是要干啥?
答
1/(19*21)+1/(21*23)+1/(23*25)+1/(25*27)+.+1/(97*99)
=1/2[1/19-1/21+1/21-1/23+1/23-1/25+.+1/97-1/99]
=1/2[1/19-1/99]
=1/2(99-19)/99*19
=1/2*80/1881
=40/1881