是否存在整数a、b、c使(9/8)^a·(14/9)^b·(16/21)^c值分别等于21和49?若存在,求出abc;若不存在,说明理回答要答上方法,解得过程要明确,我的金币多,好的话我还可以再加50,看你怎么样喽要求特别详细点,我就加50分不要说“汗”之类的话,因为我才五年级,请见谅还有为什么(3^2a / 2^3a) ×( 2^b × 7^b /3^2b) × ( 2^4c× 3^c/7^c)就可以=3 ^(2a-2b-c) × 2^(4c+b-3a)× 7^(b-c)=7× 3 了呢?怎样变式的?

问题描述:

是否存在整数a、b、c使(9/8)^a·(14/9)^b·(16/21)^c值分别等于21和49?若存在,求出abc;若不存在,说明理
回答要答上方法,解得过程要明确,
我的金币多,好的话我还可以再加50,看你怎么样喽
要求特别详细点,我就加50分
不要说“汗”之类的话,因为我才五年级,请见谅
还有为什么(3^2a / 2^3a) ×( 2^b × 7^b /3^2b) × ( 2^4c× 3^c/7^c)就可以=3 ^(2a-2b-c) × 2^(4c+b-3a)× 7^(b-c)=7× 3 了呢?
怎样变式的?

(9/8)^a·(14/9)^b·(16/21)^c=9/8*9/8*.*9/8*14/9*14/9*.*14/9*16/21*16/21*.16/21 (说明:有a个9/8,b个14/9,c个16/21相乘)=3*3*.3(2a个3)*2*2*...2(b个2)*7*7*...*7(b个7)*2*2*.*2(4c个2)/2*2*2*.*2(3a...