解一条数学题、多项式!(-x)的3次方乘以x的2n-1次方再加x的2n次方乘以(-x)的2次方

问题描述:

解一条数学题、多项式!
(-x)的3次方乘以x的2n-1次方再加x的2n次方乘以(-x)的2次方

等于0
根据同底数幂相乘原则,则有-x^3+2n-1加上x^2n+2
所以为零

(-x)^3 * x^(2n-1)+x^(2n)*(-x)^2
=-x^3 * x^(2n-1)+x^(2n)*x^2
=-x^(3+2n-1)+x^(2n+2)
=-x^(2n+2)+x^(2n+2)
=0

【解】
-x^3*x^(2n-1)+x^(2n)*(-x)^2
=-x^(2n+2)-x^(2n+2)
=0