若多项式2x^3-8x^2+x-1与多项式3x^3+2mx^2-5x+3的和不含x^2项,则m=多少
问题描述:
若多项式2x^3-8x^2+x-1与多项式3x^3+2mx^2-5x+3的和不含x^2项,则m=多少
答
(2x^3-8x^2+x-1)+(3x^3+2mx^2-5x+3)=5x^3+(2m-8)x^2-4x+2既然不含x^2项,所以2m-8+0,m=4
答
2x^3-8x^2+x-1+(3x^3+2mx^2-5x+3)=5x^3+(2m-8)x^2-4x+2
x^2系数是2m-8,要不含x^2,则2m-8=0
得:m=4
祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!O(∩_∩)O
答
2x^3-8x^2+x-1+(3x^3+2mx^2-5x+3)=5x^3+(2m-8)x^2-4x+2
x^2系数是2m-8,要不含x^2,则2m-8=0
得:m=4