已知函数f(x)=2根号3sinxcosx+2cosx^2x-1,若角α、β的终边不共线,且f(α)=f(β),求tan(α+β)的值我已经化简出来了f(x)=2sin(2x+π/6)

问题描述:

已知函数f(x)=2根号3sinxcosx+2cosx^2x-1,若角α、β的终边不共线,且f(α)=f(β),求tan(α+β)的值
我已经化简出来了f(x)=2sin(2x+π/6)

现在sin(2α+π/6)=sin(2β+π/6),所以只能是(1)2α+π/6=2β+π/6+整数*2π(2)2α+π/6+2β+π/6=整数*2π+π(看看sin的图像,想想它的定义,你会发现这一点的)对于(1)α=β+整数*π,角α、β的终边共线,矛盾...