求积分∫上3下0 x/根号下x+1 dx
问题描述:
求积分∫上3下0 x/根号下x+1 dx
答
由题意可得: ∫[x/√(x+1)]dx =∫[(x+1-1)/√(x+1)]dx =∫√(x+1)dx-∫1/(√(x+1)dx =∫√(x+1)d(x+1)-∫1/(√(x+1)d(x+1) =2[(x+1)^(3/2)]/3-2√(x+1)+C 又积分上限为3,下限为0 ...