∫(3到0)x/(1+根号x+1)dx

问题描述:

∫(3到0)x/(1+根号x+1)dx

x/(1+√x+1)
=x(1-√ x+1)/1-1-x
=√ x+1 -1
所以原式等于 ∫(3到0) [√ x+1 -1]dx
=2/3(x+1)^3/2 -x |(3到0)
=5/3