如果有理数x,y满足|x-1|+(xy-2)2=0.(1)求x,y的值;(2)试求1xy+1(x+1)(y+1)+1(x+2)(y+2)+…+1(x+2009)(y+2009)的值.
问题描述:
如果有理数x,y满足|x-1|+(xy-2)2=0.
(1)求x,y的值;
(2)试求
+1 xy
+1 (x+1)(y+1)
+…+1 (x+2)(y+2)
的值. 1 (x+2009)(y+2009)
答
知识点:本题考查分式的运算,难度较大,尤其(2)要注意观察得出规律后才能运算.
(1)∵x-1|≥0,(xy-2)2≥0,又|x-1|+(xy-2)2=0
∴|x-1|=0;(xy-2)2=0
∴x=1,y=2;
(2)原式=
+1 2
+1 2×3
+1 3×4
+…+1 4×5
1 2010×2011
=
+1 2
-1 2
+1 3
-1 3
+1 4
-1 4
+…+1 5
-1 2009
+1 2010
-1 2010
=1 2011
.2010 2011
答案解析:(1)|x-1|≥0,(xy-2)2≥0,而|x-1|+(xy-2)2=0.由此可得出x、y的值.
(2)写出分式,观察规律可得出结果.
考试点:分式的加减法;非负数的性质:绝对值;非负数的性质:偶次方.
知识点:本题考查分式的运算,难度较大,尤其(2)要注意观察得出规律后才能运算.