如果tan(α+β)=3/4,tan(β-π/4)=1/2,那么tan(α+π/4)的值为().

问题描述:

如果tan(α+β)=3/4,tan(β-π/4)=1/2,那么tan(α+π/4)的值为().

Tan(α+π/4)
=tan[(α+β)-(β-π/4)]
=[tan(α+β)-tan(β-π/4)]/[1+ tan(α+β)tan(β-π/4)]
=(3/4-1/2)/(1+3/4×1/2)
=2/11