证明cos3x/sinx+sin3x/cosx=2cot2xcos3x/sinx+sin3x/cosx=2cot2x 证明左等於右边.

问题描述:

证明cos3x/sinx+sin3x/cosx=2cot2x
cos3x/sinx+sin3x/cosx=2cot2x
证明左等於右边.

cos3x/sinx+sin3x/cosx (通分)
=(cos3xcosx+sin3xsinx)/(sinxcosx) (分子用积化和差,分子用倍角公式)
=cos(3x-x)/(1/2sin2x)
=2cos2x/sin2x
=2cot2x.