设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.

问题描述:

设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值
我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.

∵acosB-bcosA=3c/5
∴2R*sinAcosB-2R*sinBcosA=2R*sinC*3/5(正弦定理)
∴sinAcosB-sinBcosA=3sinC/5
∴sinAcosB-sinBcosA=3sin[π-(A+B)]/5
∴sinAcosB-sinBcosA=3sin(A+B)/5
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB+cosAsinB)
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB)+ (3/5)*(cosAsinB)
∴(2/5)*(sinAcosB)=(8/5)*(sinBcosA)
∴sinAcosB=4sinBcosA
∴tanAcotB=(sinA/cosA)*(cosB/sinB)=(sinAcosB)/(sinBcosA)=(4sinBcosA)/(sinBcosA)=4

a/sina=b/sinb=c/sincsina/sinb=a/bcosb=(a^2+c^2-b^2)/2accosa==(b^2+c^2-a^2)/2ac因为acosB-bcosA=3/5c所以化简得3c^2=5a^2-5b^2tanAcotB=sina乘以cosb/cosa*sinb=a/b乘以(a^2+c^2-b^2/b^2+c^2-a^2)再乘以b/a=(3...