∫{lnx/x^2}dx 等于( ) A.lnx/x+1/x+C B.-lnx/x+1/x+C C.lnx/x-1/x+C

问题描述:

∫{lnx/x^2}dx 等于( ) A.lnx/x+1/x+C B.-lnx/x+1/x+C C.lnx/x-1/x+C

∫[ lnx/(x^2) ]dx
=-∫ lnxd(1/x)
=-lnx/x + ∫ (1/x^2)dx
=-lnx/x - 1/x + C

B
∫lnx/x² dx = (-1/x)·lnx - ∫(-1/x)·(lnx)' dx
= (-1/x)·lnx + ∫1/x² dx
= (-1/x)·lnx + (-1/x)
= (-1/x)(lnx + 1)