在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

问题描述:

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.

(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

(1)证明:∵∠A=2∠B,∠A=60°
∴∠B=30°,∠C=90°
∴c=2b,a=

3
b
∴a2=3b2=b(b+c)
(2)关系式a2=b(b+c)仍然成立.
法一:证明:∵∠A=2∠B
∴∠C=180°-∠A-∠B=180°-3∠B
由正弦定理得
a
sinA
b
sinB
c
sinC
=2R

即a=2RsinA,b=2RsinB,c=2RsinC
∴b(b+c)=2RsinB(2RsinB+2RsinC)
=4R2sinB[sinB+sin(180°-3∠B)]
=4R2sinB(sinB+sin3∠B)
=4R2sinB(2sin2BcosB)
=4R2sin2B×sin2B
=4R2sin22B
又∵a2=4R2sin2A=4R2sin22B
∴a2=b(b+c)
(3)若△ABC是倍角三角形,由∠A=2∠B,应有a2=b(b+c),且a>b.
当a>c>b时,设a=n+1,c=n,b=n-1,(n为大于1的正整数)
代入a2=b(b+c),得(n+1)2=(n-1)•(2n-1),解得n=5,
有a=6,b=4,c=5,可以证明这个三角形中,∠A=2∠B
当c>a>b及a>b>c时,
均不存在三条边长恰为三个连续正整数的倍角三角形.
边长为4,5,6的三角形为所求.
答案解析:(1)根据已知可求得各角的度数,再根据三角函数求得各边的关系,从而不难得到结论.
(2)根据已知表示各角的度数,再根据正弦定理对式子进行整理,从而得到结论;
(3)注意分三种情况进行分析.
考试点:勾股定理的逆定理;勾股定理;解直角三角形.

知识点:此题主要考查了直角三角形的判定,勾股定理及正弦定理等知识点的综合运用.