已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.答对得分

问题描述:

已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
已知空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE和DF是异面直线.
答对得分

假设AE和DF共面
又因为F是BC的中点,而E不是BC的中点(原因是:AB≠AC)
而且E和F都在直线BC上
因此我们能得到AD和BC共面,也就是ABCD在同一个平面上,这和题目中ABCD是空间四边形是不符合的,所以我们得到假设错误,也就是AE和DF是异面直线.

用反正法解这类题,方法就是假设和求证相反,然后根据假设推出和已知条件的矛盾,然后就可以了!就拿这个题给你解解看:证明:假设AE、DF在同一平面上.根据异面相交与一条直线的原理就可以知道:面AEFD与面BCD应该交与一...