对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.

问题描述:

对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.

由题知,|x-1|+|x-2|≤|a+b|+|a-b||a| 恒成立,故|x-1|+|x-2|小于或等于 |a+b|+|a-b||a| 的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当 (a+b)(a-b)≥0 时取等号,∴|a+b|+|a-b||a| 的最小...