如图 ,在三角形ABC中,作平行于BC的直线交AB于D,交AC于点E,如果BE和CD相交于点O,AO和DE相交于点F ,AO的延长线和BC相交于点G ,证明 1 :BG比GC=DF比FE 2:BG=GC 额 图不会弄出来 ,大概意思 是 D E 是 中位线 ,

问题描述:

如图 ,在三角形ABC中,作平行于BC的直线交AB于D,交AC于点E,如果BE和CD相交于点O,AO和DE相交于点F ,AO的延长线和BC相交于点G ,证明 1 :BG比GC=DF比FE
2:BG=GC
额 图不会弄出来 ,大概意思 是 D E 是 中位线 ,

汗,这是课本原题-----
服了--------
1 DE是中位线,DF/BG=AF/AG=FE/GC
变形得,BG/GC=DF/FE
2 看GOB和FEO相似,GOC和DEO相似
即得BG/GC=EF/DF=DF/FE(用第一步)
所以BG=GC