f(x)为非0函数高数f(x+y)=f(x)f(y) 当x=0时的导数为1证明f(x)的导数等于f(x)
问题描述:
f(x)为非0函数高数f(x+y)=f(x)f(y) 当x=0时的导数为1证明f(x)的导数等于f(x)
答
证明:因为f(x+y)=f(x)f(y),令y=0,得f(x)=f(x)f(0),所以f(0)=1;
又因为两边同时求导,得f'(x)f(y)+f(x)f'(y)=2f'(x+y),令y=0得,2f'(x)=f'(x)f(0)+f(x)f'(0),带入得:
f'(x)=f(x)
答
f(x+y)=f(x)f(y)
put x=y=0
f(0)=f(0)f(0)
f(0) =1
f'(x) = lim(y->0){ [f(x+y)-f(x)]/y}
= lim(y->0) [f(x)f(y)-f(x)]/y
= f(x) lim(y->0)(f(y)-1)/y
= f(x) lim(y->0)( f(0+y)-f(0))/y
= f(x) f'(0)
= f(x) #