已知直角坐标平面上四点A(1,0)B(4,3)C(2,4)D(0,2),求证:四边形ABCD是等腰梯形

问题描述:

已知直角坐标平面上四点A(1,0)B(4,3)C(2,4)D(0,2),求证:四边形ABCD是等腰梯形

A(1,0)B(4,3)
C(2,4)D(0,2),
AB=(3,3)
CD=(-2,-2)
所以AB平行于CD
AD=(-1,2)
BC=(-2,1)
两者不平行四边形ABCD是梯形
又|AD|=|BC|
所以
所以四边形ABCD是等腰梯形