多项式x3+ax2+bx+5被x-1除余7,被x+1除余9,则数对(a,b)=(  ) A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)

问题描述:

多项式x3+ax2+bx+5被x-1除余7,被x+1除余9,则数对(a,b)=(  )
A. (-2,3)
B. (2,-3)
C. (-3,2)
D. (3,-2)

多项式x3+ax2+bx+5被x-1除余7,即 x3+ax2+bx-2=(x-1)[x2+(a+1)x+(a+b+1)],即a+b+1=2,a+b=1 被x+1除余9,即 x3+ax2+bx-4=(x+1)[x2+(a-1)x+(b-a+1)],即b-a+1=-4,a-b=5,联立可得:a+b=1a−b=5,解得...