如图甲,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°. (1)求∠NMB的大小. (2)如图乙,如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的大小. (3)
问题描述:
如图甲,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°.
(1)求∠NMB的大小.
(2)如图乙,如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的大小.
(3)根据(1)(2)的计算,你能发现其中的蕴涵的规律吗?请写出你的猜想并证明.
(4)如图丙,将(1)中的∠A改为钝角,其余条件不变,对这个问题规律的认识是否需要加以修改?请你把∠A代入一个钝角度数验证你的结论.
答
(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠B=∠ACB=
=70°,180°−∠A 2
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=20°;
(2)∵在△ABC中,AB=AC,∠A=70°,
∴∠B=∠ACB=
=55°,180°−∠A 2
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=35°;
(3)猜想:∠NMB=
∠A.1 2
证明:∵在△ABC中,AB=AC,
∴∠B=∠ACB=
=90°-180°−∠A 2
∠A,1 2
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=
∠A;1 2
(4)不需要修改.
若∠A=100°,
∵在△ABC中,AB=AC,
∴∠B=∠ACB=
=40°,180°−∠A 2
∵MN是AB的垂直平分线,
∴∠NMB=90°-∠B=50°=
∠A.1 2