已知a²+4a+1=0且2a³+ma²+2a/a的四次方+ma²+1=3,求m的值
问题描述:
已知a²+4a+1=0且2a³+ma²+2a/a的四次方+ma²+1=3,求m的值
答
a^2 = -4a-1(2a(-4a-1) + m(-4a-1) + 2a) / ((-4a-1)^2 + m(-4a-1) + 1)= (-8(-4a-1)-2a + (-4am-m) + 2a) / (16a^2+8a+1 + (-4am-m) + 1)= (32a+8 + (-4am-m) ) / (16(-4a-1)+8a+1 + (-4am-m) + 1)= (32a+8 + (-4am...