设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式

问题描述:

设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式

Sn=(1/4)(an+1)^2
S(n-1)=(1/4)[a(n-1)+1]^2
相减
且an=Sn-S(n-1),
所以4an=(an+1)^2-[a(n-1)+1]^2
[a(n-1)+1]^2=(an+1)^2-4an=(an-1)^2
a(n-1)+1=an-1或a(n-1)+1=-an+1
若a(n-1)+1=-an+1
a(n-1)+a(n)=0
和an是正整数数列矛盾
所以a(n-1)+1=an-1
an-a(n-1)=2
所以an是等差数列
d=2
a1=S1
所以a1=1/4(a1+1)^2
(a1-1)^2=0
a1=1
an=1+2(n-1)=2n-1