如图,P是等边△ABC外接圆BC上任意一点,求证:PA=PB+PC.

问题描述:

如图,P是等边△ABC外接圆

BC
上任意一点,求证:PA=PB+PC.

证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=∠BCP,在△ACD和△BCP中,AC=BC ∠ACD=∠BCP CP=CD&...