过三角形ABC所在平面外一点P,作PO垂直平面,连接PA,PB,PC,PA垂直PB,PB垂直PC,PC垂直PA,则O是三角形ABC什么

问题描述:

过三角形ABC所在平面外一点P,作PO垂直平面,连接PA,PB,PC,PA垂直PB,PB垂直PC,PC垂直PA,则O是三角形ABC什么
是什么心呢?

答:O是△ABC的垂心
证明:连接AO并延长交BC于D,连接PD
∵PO⊥平面ABC
BC在平面ABC内
∴PO⊥BC
又∵PA⊥PC,PA⊥PB
∴PA⊥平面PBC
又∵BC在平面PBC内
∴PA⊥BC
∴BC⊥平面PAD
∴BC⊥AD
即AD是△ABC的高
其他两条高可同样证明