试确定a的取值范围,使不等式组x+x+14>11.5a−12(x+1)>12(a−x)+0.5(2x−1)只有一个整数解.
问题描述:
试确定a的取值范围,使不等式组
只有一个整数解.
x+
>1x+1 4 1.5a−
(x+1)>1 2
(a−x)+0.5(2x−1)1 2
答
知识点:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
解不等式①得x>
3 5
解不等式②得x<a
因为不等式组有解,
所以不等式组的解集为
<x<a3 5
又因为不等式组只有一个整数解即为1,
所以1<a≤2.
答案解析:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
考试点:一元一次不等式组的整数解.
知识点:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.