已知函数f(x)=3ax+1-2a在区间(-1,1)上存在x0,使得f(x0)=0,则a的取值范围?答案是∵函数f(x)=3ax+1-2a在区间(-1,1)上存在x0,使得f(x0)=0,由于函数是一个一次函数∴f(1)f(-1)<0即 (a+1)(1-5a)<0,解得a<-1或a>1 5但为什么得到f(1)f(-1)<0?

问题描述:

已知函数f(x)=3ax+1-2a在区间(-1,1)上存在x0,使得f(x0)=0,则a的取值范围?
答案是∵函数f(x)=3ax+1-2a在区间(-1,1)上存在x0,使得f(x0)=0,由于函数是一个一次函数
∴f(1)f(-1)<0
即 (a+1)(1-5a)<0,解得a<-1或a>1 5
但为什么得到f(1)f(-1)<0?