在三角形ABC中,sinA=sinB+sinC/cosB+cosC,试判断三角形的形状

问题描述:

在三角形ABC中,sinA=sinB+sinC/cosB+cosC,试判断三角形的形状
要求一定要有具体步骤

.在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),
判断三角形ABC的形状.
:∵sinA=(sinB+sinC)/(cosB+cosC) ∴sinA- (sinB+sinC)/(cosB+cosC) =0
∴sinA- 2sin[(B+C)/2]cos[(B-C)/2]/ 2cos[(B+C)/2]cos[(B-C)/2]=0
∴sinA- sin[(B+C)/2] / cos[(B+C)/2]=0
∴2sin(A/2)cos(A/2)- cos(A/2) / sin(A/2)=0,又∵cos(A/2)≠0
∴2sin(A/2) - 1 / sin(A/2)=0
∴2sin2 (A/2) - 1=0 ∴2sin2 (A/2)=1 ∵sin(A/2)>0
∴sin(A/2)=√2/2,则A/2=π/4
∴A=π/2,即:三角形ABC为以A为直角顶点的直角三角形.
方法二:
由余弦定理和正弦定理:
sinA(cosB+cosC)=sinB+sinC
==>a/R[(a^2+c^2-b^2)/2ac+(a^2+b^2-c^2/2ab)]=b/R+c/R
==>(a^2+c^2-b^2)/2c+(a^2+b^2-c^2/2b)=b+c
==>b(a^2+c^2-b^2)+c(a^2+b^2-c^2)=2bc(b+c)
==>ba^2-bc^2-b^3+ca^2-cb^2-c^3=0
==>(ba^2+ca^2)-(bc^2+c^3)-(b^3-cb^2)=0
==>a^2(b+c)-c^2(b+c)-b^2(b+c)=0
==>(b+c)(a^2-c^2-b^2)=0
==>a^2=c^2+b^2
所以,三角形是直角三角形.