若有理数X、Y满足x²-4x+y²+6y+13=0,求xy的值
问题描述:
若有理数X、Y满足x²-4x+y²+6y+13=0,求xy的值
答
(x-2)^2+(y+3)^2=0;x=2,y=3,xy=6
答
x²-4x+y²+6y+13=0
(x²-4x+4)+(y²+6y+9)=0
(x-2)²+(y+3)²=0
∴(x-2)²=0,(y+3)²=0
x-2=0, y+3=0
x=2, y=-3
∴xy=2×(-3)=-6
答
x²-4x+y²+6y+13=0;
(x-2)²+(y+3)²=0;
x=2;y=-3;
xy=-6;
答
(x-2)^2+(y+3)^=0
x=2,y=-3
xy=-6