若函数f(x)=sin^2x-1/2(x∈R),则f(x)是( )函数,最小正周期为( )

问题描述:

若函数f(x)=sin^2x-1/2(x∈R),则f(x)是( )函数,最小正周期为( )

解由f(x)=sin^2x-1/2
=2sin^2x/2-1/2
=(2sin^2x-1)/2
=-(1-2sin^2x)/2
=-cos2x/2
即f(-x)=-cos2(-x)/2=-cos2x/2=f(x)
T=2π/2=π
即f(x)是(偶 )函数,最小正周期为(π )