已知x=1是一元二次方程ax的平方+bx-10=0的一个解,且a≠b,求a平方-b平方/2a-2b的值
问题描述:
已知x=1是一元二次方程ax的平方+bx-10=0的一个解,且a≠b,求a平方-b平方/2a-2b的值
答
将x=1带入方程得:
a+b-10=0
即a+b=10
∴(a²-b²)/(2a-2b)
=(a+b)(a-b)/[2(a-b)]
=(a+b)/2
=5
答
把x=1代入ax²+bx-10=0
a+b=10
(a²-b²)/(2a-2b)
=(a+b)(a-b)/2(a-b)
=(a+b)/2
=10/2
=5
答
把x=1代人一元二次方程ax²+bx-10=0中得a+b=10
a平方-b平方/2a-2b
=﹙a²-b²﹚÷﹙2a-2b﹚
=﹙a+b﹚﹙a-b﹚÷﹙a-b﹚÷2
=﹙a+b﹚÷2
=10÷2
=5
分数线不会画只好写成÷了.