求a1=1,a2=2,a3=3,a4=5,a5=8的通项公式

问题描述:

求a1=1,a2=2,a3=3,a4=5,a5=8的通项公式

裴波那契数列:1 1 2 3 5 8 13 21 34 ……
通项公式Fn = {[(1+√5)/2]^n-[(1-√5)/2]^n}/√5