设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0

问题描述:

设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0

反证,如果没有一个x0满足f(x0)=x0,即f(x0)不=x0,则f[f(x0)]不=f(x0),而f[f(x0)]=x0,与已知不符,故定至少有一个x0满足f(x0)=x0。证毕

若f(x)=x显然成立
若f(x)不恒等于x
不妨设f(x1)>x1
设F(x)=f(x)-x,则F(x)连续
则F(x1)=f(x1)-x1>0
F(f(x1))=f(f(x1))-f(x1)=x1-f(x1)