函数f(x)=2[cos(x/2)]^2+sinx的最小正周期是

问题描述:

函数f(x)=2[cos(x/2)]^2+sinx的最小正周期是

f(x)=2[cos(x/2)]^2+sinx
=cosx+1+six
=2^(1/2)sin(x+(pi/4))+1
最小正周期=pi

f(x)=2[cos(x/2)]^2+sinx
=cosx+sinx+1
=√2sin(x+∏/4)+1
所以最小正周期为2∏