用初等数论的知识证明2^32+1能被641整除
问题描述:
用初等数论的知识证明2^32+1能被641整除
答
题:求证641 | (2^32+1)
转化为求证 2^32 ==-1 mod 641, 这里以==表示同余号。
下面的运算基于模(除数) 641.
易见 640=2^7 * 5== -1
故(2^7 * 5)^4 ==1
即 2^28* 625==1==2^28 * (-16)=-2^32
于是 2^32==-1
也可以用洪伯阳同余式记号来描述:
2^6=64==-1/10 mod 641
故 2^7==-1/5
2^28==1/625==-1/16
故2^32==-1
答
2^32+1=4294947297 4294947297 /641=6700477
答
这问题是同余那讲的,主要是用一个数次方后的模,与现对这个数取模再次方后再取模相等这个结论.那么原题就是要证2^32同余640(mod 641),2^32=(256^2)^2,256^2=65536,65536除以641余154,154^2=23716,23716除以641余640,故得证,