a^3+b^3+3a^2+3b^2+3a+3b+2=

问题描述:

a^3+b^3+3a^2+3b^2+3a+3b+2=

a^3+b^3+3a^2+3b^2+3a+3b+1=(a+b)^3二项式定理直接可以看出
因为x^3+y^3=(x+y)(x^2+y^2-xy)
在这里x=a+b y=1带入即可
(a+b)^3+1=(a+b+1)(a^2+2ab+b^2-a-b+1)

原式=(a³+3a²+3a+1)+(b³+3b²+3b+1)
=(a+1)³+(b+1)³
=[(a+1)+(b+1)][(a+1)²-(a+1)(b+1)+(b+1)²]
=(a+b+2)(a²-ab+b²+a+b+1)