已知函数y=f(x)是定义在区间D上的增函数,对于任意的x1,x2∈D,且x1≠x2,则式子(f(x1)-f(x2))/(x1-x2)
问题描述:
已知函数y=f(x)是定义在区间D上的增函数,对于任意的x1,x2∈D,且x1≠x2,则式子(f(x1)-f(x2))/(x1-x2)
答
(f(x1)-f(x2))/(x1-x2)大于0为啥因为是增函数,X1大于X2时,F(X1)-F(X2)和X1-X2都大于0,X1小于X2时,F(X1)-F(X2)和X1-X2都小于0,所以不管X1大于X2还是X1小于X2,(f(x1)-f(x2))/(x1-x2)都大于0