证明级数收敛的一个必要条件是,n趋于无穷时,其通项趋于0.
问题描述:
证明级数收敛的一个必要条件是,n趋于无穷时,其通项趋于0.
调和级数满足这个条件.
但是调和级数是发散的.
那么它跟其他收敛的级数有什么本质的区别呢?
本质.
答
把调和级数看成一个数列,数列通项是调和级数前n项和
数列收敛的充要条件是:柯西判别法(什么名字记不清楚了)
对于调和级数的这个数列,满足
∀ε>0 ,存在n>0,∀m>n,有 1/n + 1/(n+1)+ ……+1/m 就叫做满足柯西判别法
现在 存在ε=0.1,∀n>0
对于这个任意取得n,存在m=2n
使得1/n + 1/(n+1)+ ……+1/m=1/n + 1/(n+1)+ ……+1/2n>(1/2n)*(n+1)>(1/2n)*n=0.5 > ε
所以不满足柯西判别法
所以调和级数不收敛
对于别的级数,比如1+ 1/2^2 + 1/3^2 + 1/4^2 +……+ 1/n^2
∀ε>0 存在n=(1/ε)+1 ∀m>n
有1/n^2 + 1/(n+1)^2+ ……+1/m^2
=1/(n-1)- 1/n + 1/n -1/(n+1)+……+1/(m-1) - 1/m
=1/(n-1)-1/m