如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?(精确到0.1海里,3≈1.732)

问题描述:

如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?
(精确到0.1海里,

3
≈1.732)

由题意,得AB=20×1=20(海里).
直角三角形MDB中,BD=MD•cot45°=MD,
直角三角形AMD中,AD=MD•cot30°=

3
MD.
∵AB=AD-BD=(
3
-1)MD=20,
∴MD=10(
3
+1)≈27.3(海里).
答:货轮到达灯塔正东方向的D处时,货轮与灯塔的距离约为27.3海里.
答案解析:本题中MD是直角三角形MDB和直角三角形ADM的共有直角边,那么可用MD来表示出AD和BD,再根据AB的长来求出MD.
考试点:解直角三角形的应用-方向角问题.

知识点:两个直角三角形有公共的直角边时,利用好这条公共的直角边是解决此类问题的关键.