设二次函数f(x)=x2+ax+b.对任意实数x,都存在y,使得f(y)=f(x)+y,则a的最大值是 ___ .
问题描述:
设二次函数f(x)=x2+ax+b.对任意实数x,都存在y,使得f(y)=f(x)+y,则a的最大值是 ___ .
答
知识点:本题重在理解题意,先将变量x与y分离后,即将原式化成两个函数值相等,结合题意即将问题转化为两个函数值域的包含关系.
由已知得f(x)=x2+ax+b,f(y)=y2+ay+b.则原式可化为对任意实数x,都存在y使得x2+ax=y2+ay-y恒成立,令g(x)=x2+ax,h(y)=y2+ay-y,则函数g(x)=x2+ax的值域是函数h(y)=y2+ay-y值域的子集.g(x)=(x+a2)...
答案解析:先将原式化成f(y)-y=f(x)的形式,因为对任意实数x,都存在y,使得f(y)-y=f(x),则只需f(x)的值域是函数f(y)-y的值域的子集.则问题容易获解.
考试点:函数恒成立问题.
知识点:本题重在理解题意,先将变量x与y分离后,即将原式化成两个函数值相等,结合题意即将问题转化为两个函数值域的包含关系.