(6-t)^2+(2t)^2=(4倍根号2)^2 解方程
问题描述:
(6-t)^2+(2t)^2=(4倍根号2)^2 解方程
答
(6-t)²+(2t)²=(4√2)²
t²-12t+36+4t²=32
5t²-12t+4=0
(t-2)(5t-2)=0
t=2或t=2/5
答
(6-t)^2+(2t)^2=(4倍根号2)^2
36-12t+t^2+4t^2=32
5t^2-12t+4=0
(t-2)(5t-2)=0
t=2 t=2/5