一个同学所戴的眼镜是300度,这个透镜的焦度是,他的焦距是多少米

问题描述:

一个同学所戴的眼镜是300度,这个透镜的焦度是,他的焦距是多少米

眼镜的度数是这样规定的 规定:焦度D=1/f (f:焦距.单位要用1/米.1/米又叫屈光度) 眼镜度=D*100 近视镜用凹透镜,焦距:f为负 老花镜用凸透镜,焦距:f为正 生活中不说"-",就说近视眼***度.老花镜的“度数”等于它的焦距的倒数乘100.你说的1.5是视力,也就是国际标准视力表中能看到第几行所代表的数字,1.5就是能看到第13行,这只是一个检查标准.200度是指的屈光度,就是屈光系统的焦距F的倒数,我们配眼镜时所说的“度”与屈光度的关系是:1屈光度=100度.但视力和度数之间并没有换算公式,因为视力和度数是不成正比的,比如说某人近视度数为800度,看远视力表时能看到0.12,而另外一个人近视度数为300度,看远视力表只能看到0.1.1、对于同种材料制成的凸透镜,其凸度越大,屈光度数越大,反之越小.换言之,对同一只眼球而言,近视度数越高,眼球越突出,需戴近视镜度数越高.2、眼球的屈光系统是个可调的“凸透镜”,因而形态可变,当眼前放上凹透镜时,眼球仍具有自我调节功能,眼睛能看清不同距离的目标和近视或老视患者戴镜能适应本身就说明了这一点.3、由于普通眼镜与眼球相分离,形象直观,容易计算.本节探讨的重点是眼镜对眼球屈光的影响,对有关眼镜的论述,都是针对普通眼镜.戴角膜接触镜与普通眼镜在屈光方面具有相同的效果,其原理和技术在眼镜行业已经很成熟,因此不再论述.4、在屈光学中,只有在某些特殊情况下,屈光度数为P1、P2两透镜组合产生的屈光效果才是屈光度为P1+P2的透镜.在眼球与透镜组成的光路中,在效果上或定性的计算中,也可以有P1+P2这种情况,这并非透镜组合后的实际屈光效果,而是一种简化和近似,因为眼睛具有自我改变屈光度的能力.虽然较难用实验验证,但从眼球的调节效果看,它应当具有抵消镜片屈光度的作用,而该公式却具有简化计算的作用.对于眼球和透镜所组成的系统来说,至多是两个透镜组成的屈光系统,因此可以利用屈光学理论进行计算.当戴上透镜时,因眼球特殊的调节作用,将透镜的屈光度和眼球调节适应后的屈光度相加减,也可得到近似值,虽然与准确地测量眼球的屈光力尚有一段距离,但在效果上却接近.在该论证中,尽管从理论上进行了推导,但实验和测量都非常困难,就象配制近视镜需要试戴一样,在用来指导配镜的过程中还要进行试验.5、从眼球的屈光特点看,有人测得眼球的静屈光力为+58.6D,这虽然是一特例,但也基本反映出眼球具有很强的屈光力,其调节相对较小,正常眼为0——10D左右,近视眼为n——10D(n指眼球的近视屈光度数)左右,而它又固定在眼眶内,因此对某一个人来说,可以认为眼球的屈光系统——“透镜”的中心到视网膜的距离不变,在以后的计算中,可认为像距为常数K,对于眼球的屈光来说,如果能在视网膜上成清晰的像,该屈光系统仍满足透镜成像公式 1/u+1/k=P 其中K是常数,P为眼球的屈光度数,是变量,意思是不同的人看不同距离的目标和不同的人眼球的屈光度数不同,U指目标到眼球的距离.该公式成立的条件是:某一时刻,眼睛看某一距离的目标,且目标在眼睛的近、远点之间.从公式看,正视眼看无穷远处时1/u=0,上式可化为P=1/K,可令1/k=P0,即P0为眼球的静屈光度.当看距眼球为L的目标时,“透镜”成像公式变为1/L+1/K=1/L+P0,1/L为眼球增加的屈光度数,1/L+P0即为眼球看距离为L的目标时的屈光度.对于戴镜者来说,在一般情况下,眼球到眼镜中心的距离约为1.2——2.4CM,以下用h表示,但对于某人某一时刻的值是确定的,设屈光度为P'的透镜的焦距为F,当看距离为L的目标时,镜片成像公式如下:1/L+1/V=P' ==> 1/V=P'-1/L ① 此时透镜所成像到眼球这一“透镜”的距离为|V|+h,眼球的屈光情况满足公式:1/(|V|+h)+1/K=P ② 从公式看,如果|V|比h大得多,根据①公式,②式可近似简化为:1/|V|+1/K=D=|D'-1/L|+1/K ③ 由于眼睛透过透镜看到的是虚像,V