求一道高数计算题.y=1+xe^y,求dy/dx,d²y/dx².

问题描述:

求一道高数计算题.
y=1+xe^y,求dy/dx,d²y/dx².

答:y=1+xe^y两边对x求导:y'=e^y+xy'e^y(1-xe^y)y'=e^y[1-(y-1)]y'=e^y(2-y)y'=e^y………………(1)y'=e^y /(2-y)所以:dy/dx= e^y /(y-2)(1)两边再次对x求导:-y'*y'+(2-y)y''=y'e^y-e^(2y) /(2-y)^2 -(2-y)y''...