设α+β=π/3,tanα+tanβ=3,则cosαcosβ=
问题描述:
设α+β=π/3,tanα+tanβ=3,则cosαcosβ=
答
tana+tanb=3
sina/cosa+sinb/cosb=3
(sinacosb+sinbcosa)/cosacosb=3
sin(a+b)/cosacosb=3
sin(派/3)/cosacosb=3
(根号3)/2=3cosacosa
cosacosb=(根号3)/6.