某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?

问题描述:

某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3多xm3,交纳水费y元.
(1)求y关于x的函数解析式,并写出x的取值范围.
(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3

(1)由题意,得
y=2x+8(x>8)
(2)由题意,得
2x+8≤20,
解得:x≤6,
∴x最多=6
∴每月的用水量最多为14m3
答案解析:(1)根据总价=单价×数量就可以表示出y与x之间的函数关系式;
(2)根据(1)的解析式建立不等式求出其解即可.
考试点:一次函数的应用.
知识点:本题考查了总价=单价×数量的运用,一次函数的解析式的运用及列不等式解实际问题的运用,解答时求出一次函数的解析式是关键.