a/1a1+b/1b1+c/1c1=1求abc/1abc1除以(bc/1ab1*ac/1bc1*ab/1ac1)

问题描述:

a/1a1+b/1b1+c/1c1=1求abc/1abc1除以(bc/1ab1*ac/1bc1*ab/1ac1)

(bc/|ab|*ac/|bc|*ab/|ac|)=[(abc)/|abc|]^2=1(abc/|abc|)/(bc/|ab|*ac/|bc|*ab/|ac|) =abc/|abc| 已知a/1a1+b/1b1+c/1c1=1因为a/1a1=±1,b/1b1=±1,c/1c1=±1a、b、c三个数均为正数,a/1a1+b/1b1+c/1c1=3a、b、c三个...