设函数y=yf(x)在【0,pai】内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=a -1b 0c pai/2d 2
问题描述:
设函数y=yf(x)在【0,pai】内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=
a -1
b 0
c pai/2
d 2
答
B
对方程x+cos(x+y)=0两边取微分,得 dx - sin(x+y)d(x+y)=0
即 dx - sin(x+y)dx+sin(x+y)dy=0,整理得[1- sin(x+y)]dx= - sin(x+y0dy
从而 |dy/dx|=| [1- sin(x+y)]/sin(x+y) | (*)
当x=0时,代入原方程 得y=pai/2,
再把求得的y=pai/2,x=0代入(*)式得 |dy/dx|x=0 =0 ,选B