设函数y=g(x)的方程y-cos(x^2+y^2)=x所确定,求dy/dx

问题描述:

设函数y=g(x)的方程y-cos(x^2+y^2)=x所确定,求dy/dx

利用隐函数的求导,直接对两边求导【欢迎追问,满意采纳】zxb

两边对x求导:
y'+sin(x^2+y^2)*(2x+2yy')=1
[1+2ysin(x^2+y^2)]=1-2xsin(x^2+y^2)
得:y'=[1-2xsin(x^2+y^2)]/[1+2ysin(x^2+y^2)]

答:
y-cos(x^2+y^2)=x
两边对x求导:y'+sin(x^2+y^2)*(2x+2yy')=1
[2ysin(x^2+y^2)+1]*y'=1-2xsin(x^2+y^2)
y'=[1-2xsin(x^2+y^2)]/[2ysin(x^2+y^2)+1]
所以:
dy/dx=[1-2xsin(x^2+y^2)]/[2ysin(x^2+y^2)+1]