周期数列问题
问题描述:
周期数列问题
数列{an}的首项a1=p,p在[0,1/2)范围内,且a(n+1)=2an×(1—an),n属于N*,判断数列{an}是否为周期数列,证明结论
答
由a(n+1)=2an×(1-an)得,
1-a(n+1)=1-2an×(1-an)=(1-an)^2
依次类推得
1-an=(1-a(n-1))^2=(1-a(n-2))^4=.
=(1-a1)^(2^(n-1))=(1-p)^(2^(n-1))
于是有an=1-(1-p)^(2^(n-1))
由p在[0,1/2)范围内可知,1>=1-p>1/2,当n变大时,an递增趋于1,因此不可能是周期数列.