有约束条件的极值讨论问题

问题描述:

有约束条件的极值讨论问题
设f(x,y)与Q(x,y)均为可微函数,且Q偏y的导函数不等于0,已知(x0,y0)是f(x,y)在约束条件Q(x,y)=0下的一个极值点,为什么f(x0,y0)对X的偏导数不等于0,

f对x的导数为零说明无论x如何变化,对f的值是没有影响的.换句话说,优化的时候咱不关心x究竟取多少,这导致了一个结果,什么结果呢,y几乎可以任意取值,因为任给一个y我都可以找到一个x来让约束条件成立,只要这个x存在,而x对我们的目标函数f没有影响,那么这个问题就变成任意取一个y值再寻找f是否有极值的问题了,约束已经不存在了,可是请问当约束都不存在的时候,极值一定存在吗?很多时候是不存在的,好比当你有无限的金钱的时候,没必要考虑如何花销效果最好一样.