在三角形ABC中,角BAC=90,AB=AC,点E在边BC的延长线上,DA垂直AE,AD=AE,点F为DE中点,求证CF=DF

问题描述:

在三角形ABC中,角BAC=90,AB=AC,点E在边BC的延长线上,DA垂直AE,AD=AE,点F为DE中点,求证CF=DF
rt

证明:连接CD.
在△ADC和△AEB中,因为∠CAE=90°+∠CAE=∠BAE,AD=AE,AC=AB.
所以:这两个三角形全等.
所以:∠ADC=∠AEB,即∠ADC=∠AEC
所以:A、D、E、C四点共园.
所以:∠DCE=∠DAE=90°.
而F是DE的中点,
所以:DF=CF.